

How to Choose the Best Slurry Pump for My Application

GIW® Minerals

Choose the the right tool for the job.

Gather Information

- Basic information for pump selection:
- Flow Rate
- Head (or pipeline info)
- Specific Gravity of Slurry
- Particle size: d50, d80
- These are required to get a basic pump size and calculate motor power.

Specific Gravity and Particle Size

- Slurry type based on ANSI/HI standards
- Slurry SG and particle size (D50) are used to classify different slurries.
- Class 1 slurry is the least aggressive.
- Class 4 slurry is the most aggressive.

Table 12.3.5a - Recommended service limitations for acceptable wear

	r						
		Service class					
	1	2	3	4			
Head per stage:							
m	105	73	55	40			
(ft)	345	240	180	130			
mpeller peripheral speed: All-metal pump m/s	46	38	33	28			
(ft/min)	9000	7500	6500	5500			
Rubber-lined pump	Head gener rubber is ge	ated by impe nerally limite	llers made of d to 40 m (13	natural 0 ft) per			

allow higher limits.

28 m/s (5500 ft/s). Synthetic elastomers may

Head

- The Slurry Class is used to provide recommended limits for Head.
- Head recommendation is based on acceptable erosive wear.
- Higher heads result in higher wear rate.
- Limits are based on head (per stage) or peripheral velocity limits.

Flow

- The Slurry Class is used for recommended flow ranges.
- Flow recommendations vary for different hydraulic designs.
- Flow ranges are given as a percentage of the Best Efficiency Point.
- Low flow causes excess recirculation resulting in higher wear.

Pump Performance Curve

- Graphical representation of pump performance.
- Best Efficiency Point (BEP)
- Stay within allowable head and flow ranges (if possible)

Additional Information for Pump Selections

- NPSHa
- Slurry PH, Chloride Content, Temperature
- Suction Pressure
- Air Content

Net Positive Suction Head Available

- Centrifugal pumps require sufficient pressure at the inlet.
- Pumps will cavitate without sufficient NPSHa.

PH, Chloride Content, Slurry Temp

- Determine if special materials are need
- GIW's 28G High chrome white iron is very versatile and can typically be used from a PH of 4.5 to 12
- We also have a range of other alloy's that can be used for various chemical applications.

Suction Pressure

Required to get a pump with the correct pressure rating

Air Content

- Air can cause major problems if not accounted for.
 - Critical information

Mechanical Requirements

- Slurry pumps must have a robust bearing assembly that can meet the demands:
 - Large overhung loads
 - Bearing life
 - Shaft deflection

Slysel Pump Selection Software

 GIW has one of the best pump selection software programs in the industry.

Slysel

 Once information is entered Slysel evaluates factors such as slurry type, solids effects, pipeline friction, efficiency, wear, mechanical performance and other operational factors.

Slurry <	P	roject	Pipelin	e Pur	np duty	Pump Resu	lts					
▲ Slurry ^	Hydr	aulic Co	nfigurations	;								
Type Settling	Desc	ription			Speed (RPM)	Efficiency (%)	BEPQ (%)	NPSHR (ft)	Sphere (in)	Power (HP)	Basis curve	
Model Four component	8 x10	32 C	H 8- 1/ 4/ 3	ME	571	78	116	17.0	4.6	203.0	B 29 -07	^
Service class 3	8 x10	32 C	H 8- 1/ 4/ 31	ME	581	77	116	17.3	4.6	206.1	B 24A-04	
▲ Carrier Fluid	8 x10) 32 C	8-1/4/4N	1E	549	75	114	20.8	3.5	209.5	B 20C-93	
	8 x10) 32 C	H 8- 1/ 4/ 4	ME	549	79	112	13.9	3.9	199.4	B 29B-05	
рн 6.70	8 x9	28 C H	47-3/8/5N	ΛE	644	74	111	15.4	2.9	212.8	B 8-14	
Chlorides 0 ppm	8 x10	32 C	H 8- 1/ 4/ 4	ME	549	79	110	13.8	3.9	199.4	B 30A-07	
Temperature 70.0 °F	10x1	2 32 A	H10- 1/ 4/ 4	4ME	535	75	101	9.4	4.2	209.4	B 19C-07	
Use water as fluid 🗸	10x1	2 26 C	H 8- / / 3N	/IE	694	79	100	9.9	5.0	199.4	B312B-93	
	10x1	2 26 C	H 8- / / 3N	ИE	694	81	100	9.9	5.0	195.8	B311B-93	
	8 x10) 25 C	H 8- 1/ 4/ 4	ME	732	77	96	17.3	3.4	205.4	B 12A-05	
Fluid S.G. 0.999	8 x10	0 32 C	H 8- 1/ 4/ 5	ME	540	76	94	13.8	3.2	206.3	B 2A-10	
Solids Concentration Delivered	8 x10) 32 C	H 8- 1/ 4/ 5	ME	549	78	94	13.9	3.2	202.9	B 33B-05	
Mixture S.G. 1.250	10x1	2 36 C	H10- 1/ 4/ 4	1ME	466	75	/6	6.4	4.0	209.1	B 29C-93	
Cod burghers 15.2.%	10x1	2 32 C	H10-1/4/4		529	70	/5	9.0	4.2	207.3	B 30C-05	
CVd, by volume 15.2 %	TOXI	2 30 A	H10- 1/ 4/ :	DIVIE	401	/1	/4	10.2	5.0	222.5	B I -05	v
Cwd, by weight 32.2 %	Pump Assemblies											
▲ Solids Properties	Tag	Туре	Shaft 🔺	Pressu (psi)	Assembly	Shaft	Plug si	Casing	Impeller	Stuffing Box	Bearing Assembly	
Solids S.G. 2.650	SC	ISA	57/16	485	9593D-00) 4267C	204.5	5776D	5397C-00	5442D	5816C	
Particle shape Angular 💙		2011	2 1/20	100			20115	51100		51125	50100	
Miller number (G75) 112												
Abrasivity 1.00												
▲ Particle Size Distribution												
Show particle size distribution plot												
Fines (<74 µm) 18.8 %												
Extrapolate fines 🗸												
D50 <mark>200 μm</mark>												
Ratio 2.30												
D85 460 µm												
Extrapolate topsize												
Topsize 1340 µm												

Slysel

- Slysel generates a list of pump options suitable for the supplied duty conditions.
- Any given set of duty conditions may yield many very different pumps to choose from

Evaluate the Options

- Technical skill and experience is needed to sort thru the various possibilities to find the Best Pump for My Application
- What is the end users goal? Efficiency, wear life, commonality, etc.
- Understand the options available.

Slurry Pumps

LCC Pumps

- High efficiency and excellent wear characteristics over a broad operating range up to 15,000 gallons per minute (3405 m³/hr).
- Rubber and metal wet end options allow best material choice for any application

LSA Pumps

- Wear resistant pumps for severe duties.
- Larger impellers for slower turning pumps.
 - LCC 8X10-24 vs LSA 8X10-32
- Flows up to 60,000 gallons per minute (14,000 m3/hr)

MDX Pumps

- Mill Duty pump for the most extreme duty conditions.
- Thicker cross sections
- Adjustable suction liner
- Slurry diverter
- Flow rates up to 61,650 gallons per minute (14,000 m3/hr)

TBC Pumps

- Severe duty conditions in high head/high pressure applications.
- Special tie bolt construction
- Operating flows from 5,000
 80,000 gallons per minute (1.135 - 18.200 m3/hr).

HVF Pumps

- High Volume Froth Pump
- Hydraulic design removes air from the impeller eye while the pump is running.

Slurry Pumps

Additional pump features can be found at GIWIndustries.com

Trust the Experts

- Ideally pump selections would be based on a pump that runs at BEP.
- That isn't always the case.
- Pumps may run at a range of duty conditions
- Selections may be based on NPSHa restrictions, sphere passage requirements, wear life, or other items.

Trust the Experts

- Some pump selections are a tradeoff between Capital Cost and Maintenance Cost.
- GIW can provide pumps that are upgradeable with wet end conversion options.
- The GIW team can provide solutions for today's needs and tomorrow's possibilities!

Contact and Copyright

GIW Industries, Inc. (A KSB Company) 5000 Wrightsboro Road Grovetown, Georgia 30813-2842, USA

Tel. +1 706 863-1011 E-mail: <u>GIW-Marketing@ksb.com</u>

Publisher

GIW Industries, Inc.

© Copyright GIW Industries, Inc. 2018

